Electron optics with p-n junctions in ballistic graphene
نویسندگان
چکیده
منابع مشابه
Guided plasmons in graphene p-n junctions.
Spatial separation of electrons and holes in graphene gives rise to the existence of plasmon waves confined to the boundary region. A theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths smaller than the size of charged domains, plasmon dispersion is found to be omega proportional to q(1/4). The frequency, velocity, and direction...
متن کاملSnake states along graphene p-n junctions.
We investigate transport in locally gated graphene devices, where carriers are injected and collected along, rather than across, the gate edge. Tuning densities into the p-n regime significantly reduces resistance along the p-n interface, while resistance across the interface increases. This provides an experimental signature of snake states, which zigzag along the p-n interface and remain stab...
متن کاملElectron optics in graphene
In ballistic graphene, electrons behave in many ways similar to photons. By changing the electrostatic potential locally, we realized elements in graphene that are known from optics. But in contrast to conventional optics, gapless p-n interfaces can be formed showing a negative index of refraction and the effect of Klein tunneling. Even more, electron trajectories can be bent by applying a magn...
متن کاملUltimately short ballistic vertical graphene Josephson junctions
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a c...
متن کاملThe focusing of electron flow and a Veselago lens in graphene p-n junctions.
The focusing of electric current by a single p-n junction in graphene is theoretically predicted. Precise focusing may be achieved by fine-tuning the densities of carriers on the n- and p-sides of the junction to equal values. This finding may be useful for the engineering of electronic lenses and focused beam splitters using gate-controlled n-p-n junctions in graphene-based transistors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2016
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.aaf5481